
ATAC Tutorial

Abstract

ATAC is a test coverage analysis tool developed at Bellcore by Bob Horgan and Saul London to test programs
written in the C language. ATAC measures how thoroughly a program is tested by a set of tests using data flow
coverage techniques, identifies areas that are not well tested, identifies overlap among tests, and finds minimal
covering test sets. This document is a tutorial introduction to the use of ATAC. It contains examples and
explanations of the most significant features of ATAC. Manual pages are included as an attachment.

1. Introduction to ATAC

ATAC is a test coverage analysis tool developed at Bellcore to test programs written in the C language. ATAC was
originally described in [Hor90]. ATAC measures how thoroughly a program is tested by a set of tests using data
flow coverage techniques, identifies areas that are not well tested, and identifies overlap among tests. ATAC is used
by software developers and testers to identify areas in a program that require further testing. ATAC provides
coverage measures used in conjunction with the C Risk Browser [Agr93], CRB to estimate software risk and
reliability. These measures may be used for project tracking to indicate testing progress and as acceptance criteria
to subsequent development stages. Regression testers also may use ATAC to identify a subset of tests that achieve a
high level of coverage at limited cost.

Structural coverage testing identifies program constructs that may be exercised during program execution and
determines which of these constructs are in fact exercised by a set of tests. We call these constructs testable
attributes. Testable attributes may be blocks of consecutive statements, branch decisions, and various combinations
of assignments and uses of variables. A set of tests is considered adequate with respect to a given coverage
criterion if all of the testable attributes identified by this criterion are exercised, at least once, by the set of tests. In
practice, it is quite difficult to achieve completely adequate coverage so ATAC presents a coverage measure − the
percentage of testable attributes that are exercised for a set of tests.

ATAC reports coverage measures for a number of coverage criteria. These are described in more detail in the
"Coverage Measures" section. ATAC displays source code associated with each testable attribute that has not been
exercised so that tests can be developed to exercise them.

ATAC has been designed to be used in the standard UNIX C development environment. For developers and
testers familiar with this environment, ATAC is very easy to learn and use. Although ATAC provides a large
number of options for varying the form and content of the information reported, defaults have been chosen so that
few options are required to use the basic features. Complete details of the ATAC commands and options appear in
the attached manual pages.

Section 2 of this tutorial is a complete demonstration of the use of ATAC on a small program. Section 3 covers
ATAC features for managing information collected for multiple tests. The remaining sections present additional
features, options, and trouble shooting suggestions.

2. Getting Started

ATAC is easy to use. The basic features of ATAC are presented in this section using a small word counting
program as an example of a program being tested.

Before attempting to use ATAC for the first time check that ATAC is installed on your system by entering:

$ atac -v

The output should look something like this*:

hhhhhhhhhhhhhhhhhh

UNIX is a registered trade mark of UNIX Systems Laboratories, Inc.

* This documentation applies to ATAC version 3.0. Many of the features described here are not available with older versions. Newer versions
have features not described here. (Very old versions will not even recognize the -v option to display the version number.)

1

ATAC release 3.0 Nov 06, 1992.
Copyright @ 1992 Bell Communications Research, Inc. (Bellcore)
Send comments or questions to atac@bellcore.com.

This tutorial uses a word counting program to illustrate the features of ATAC. The word counting program takes as
arguments an optional list of files and an optional combination of -l , -w, and -c to count lines, words, or characters.
By default all input comes from standard input and characters, words and lines are counted. The source code and
sample input for the word counting program consists of files makefile , main.c , wc.c , input1, input2, and input3.
These files are installed with ATAC. To copy the installed files into your current directory enter:

$ cp `atacLib`/tutorial/* .

Before using ATAC, check that the word counting program compiles and that it runs on some simple inputs:

$ make

The output from make should look like this:

cc -g -c wc.c
cc -g -c main.c
cc -g -o wordcount wc.o main.o

If you don’t like make you can enter the cc lines yourself.

The executable program is called wordcount. Run the program:

$ wordcount input1 ← test t.1

(The arrow notation to the right of the command is for reference later in this document. It is not part of the
command.) The output should look like this:

1 4 19 input1
1 4 19 total

Run the program again. This time with options:

$ wordcount -lwc input1 ← test t.2

The output should look the same.

These two tests are the initial functional tests for the wordcount example. Functional tests are designed to
demonstrate that all required features have been implemented. Functional tests typically exercise 30% to 70% of
the statements in a program. ATAC is used to help create a more thorough set of tests after the initial functional
tests are passed.

To use ATAC, remove previously created object files and executable files by entering:

$ make cleanup

(This is unnecessary if you are not using make). Compile wordcount program with ATAC by entering:

$ make CC=atacCC

The output should look like this:

atacCC -g -c wc.c
atacCC -g -c main.c
atacCC -g -o wordcount wc.o main.o

As you can see, ATAC is easily integrated with existing makefiles. The options for atacCC are the same as the
options for cc. Again, if you don’t like make you can enter the atacCC lines yourself. If errors are encountered
during compilation refer to the "Compilation and Link Errors" section.

Notice that in addition to creating the .o files, main.o and wc.o , and the executable program, wordcount, atacCC has
created main.atac and wc.atac . AtacCC creates a .atac file for each .c file it compiles. These files contain static
coverage information used in test analysis. (It is possible to restrict collection of coverage information to selected
source files. This is discussed in the "Selective Coverage" section.)

2

Now run the functional tests for wordcount. The output from each of these tests is the same as that given when
compiled without ATAC.

$ wordcount input1 ← test t.1
$ wordcount -lwc input1 ← test t.2

If these tests do not produce the same output as produced without ATAC, refer to the "Runtime Errors" section.

Notice that in addition to the expected output, executing these tests has created a file called wordcount.trace. This
file contains dynamic coverage information used in test analysis. Now we use ATAC to see how well our functional
tests have done. To obtain a summary by function (C subroutine) of the coverage obtained by these two tests enter:

$ atac -s -f wordcount.trace main.atac wc.atac

The output looks like this:

% blocks % decisions % C-Uses % P-Uses function
------------- ------------- ------------- ------------- -------------
74(23/31) 65(11/17) 60(38/63) 60(6/10) main
100(8) 50(3/6) 100(4) 50(3/6) print
100(14) 100(12) 75(12/16) 93(14/15) count
85(45/53) 74(26/35) 65(54/83) 74(23/31) == total ==

The -s option specifies that a summary is desired rather than a source code display. The -f option specifies that the
summary should include information for each function. (The -f option may be omitted to include only the total line.
For programs with many source files, -g may be substituted for -f to include information by source file instead of by
function.) The rightmost column gives the name of a function in the wordcount program. The leftmost column
gives the percentage of blocks covered by the two tests. A block is a code sequence that is always executed
sequentially, i.e. it has no internal branching constructs. The numbers in parentheses following the percentage
indicate the number of blocks covered and the total number of blocks in the function. The last line gives a total for
all functions. The remaining columns will be discussed later.

In this example, 45 out of 53 blocks, or 85 percent, have been covered by two tests. Although complete block
coverage does not guarantee that a set of tests will reveal all errors, testing is certainly incomplete if there are blocks
of code that are not exercised by any test. In order to determine what additional test cases are needed to cover the
remaining seven blocks, use the ATAC block display feature:

$ atac -mb wordcount.trace main.atac wc.atac

The -mb option specifies that the block coverage measure should be applied. The output is shown in Figure 1. The
output is paged by more (or pg). to move to the next page enter space (or return). Blocks of code not covered by
the tests are highlighted in reverse video. (The TERM environment variable must be set appropriately to view
highlighted code.) In this example, highlighted code indicates that tests are needed for:

— Invalid options.

— Default input (from standard input).

— An input file that cannot be opened.

The following tests cover these cases:

$ wordcount -x ← test t.3
$ wordcount <input1 ← test t.4
$ wordcount nosuchfile ← test t.5

Two of these tests cover error cases so the appropriate error messages are expected.

Test t.3, t.4, and t.5 were constructed by examining the uncovered source code displayed by ATAC to determine
what inputs will cause that source code to be executed. ATAC displays uncovered source code but does not
construct tests or determine what inputs are needed to cover this code. Constructing these tests is the role of the
tester.

3

Figure 1. ATAC Display of Blocks Not Covered

Check the coverage summary for all tests so far:

$ atac -s -f wordcount.trace main.atac wc.atac

The output should look like this:

% blocks % decisions % C-Uses % P-Uses function
------------- ------------- ------------- ------------- -------------
100(31) 88(15/17) 70(44/63) 90(9/10) main
100(8) 50(3/6) 100(4) 50(3/6) print
100(14) 100(12) 75(12/16) 93(14/15) count
100(53) 86(30/35) 72(60/83) 84(26/31) == total ==

All 53 blocks are now covered by the five tests we have run. Even so, they are not a complete set of tests. There
may be errors not revealed by these tests that will be revealed when different combinations of statements are
executed or statements are executed in a different order. The remaining coverage measures are designed to help
create tests that will reveal these errors.

The second column in the summary display indicates decisions that have not been exercised. A decision is a
conditional branch from one block to another. As can be seen from the ATAC summary in this example, it is
possible that a set of tests will cover all blocks in a program without covering some of the decisions. In this
example 30 of 35 decisions are covered. In order to determine what additional test cases are needed to cover the
remaining five decisions use the ATAC decision display feature:

$ atac -md wordcount.trace main.atac wc.atac

The -md option specifies that the decision coverage measure should be applied. The output is shown in Figure 2.
The value in the margin, ´?´====>, TRUE===>, or FALSE==> indicates the required value of the highlighted
conditional to cover the decision. For example, ´?´====> pointing at switch(*p) indicates that a test case is
needed in which *p has the character value ´?´ at the switch statement. For wordcount this indicates that a
test case is needed for: the -? option.

4

Figure 2. ATAC Display of Decisions Not Covered

Note that the conditional expression highlighted in the display was evaluated by execution of some of the previous
test cases. (Otherwise it would have appear highlighted in the block coverage display.) However, in none of those
test cases did it evaluate to the required value. By default, ATAC will not display a decision as not covered if the
conditional expression was never evaluated or the statement that will follow its evaluation was never exercised. In
these cases, the appropriate code fragments are highlighted in the block coverage display.

The display in Figure 2 indicates that the following test cases are needed:

— -? option.

— Multiple passes through the file processing loop (multiple input files).

— Various combinations of -l, -w, and -c options.

The following tests cover these cases:

$ wordcount -? input1 ← test t.6
$ wordcount input1 input1 ← test t.7
$ wordcount -wc input1 ← test t.8
$ wordcount -c input1 ← test t.9
$ wordcount -l input1 ← test t.10

Again, it was the testers role to understand the ATAC display of decisions not covered and to create test t.6 through
t.10 to cover them.

5

Check the coverage summary for all tests so far:

$ atac -s -f wordcount.trace main.atac wc.atac

The output should look like this:

% blocks % decisions % C-Uses % P-Uses function
------------- ------------- ------------- ------------- -------------
100(31) 100(17) 86(54/63) 100(10) main
100(8) 100(6) 100(4) 100(6) print
100(14) 100(12) 75(12/16) 93(14/15) count
100(53) 100(35) 84(70/83) 97(30/31) == total ==

All blocks and decisions have now been covered.

The third column in the summary display indicates computational variable uses, or c-uses, that have not been
exercised. A c-use, or computational variable use, is a combination of an assignment to a variable and a use of a the
variable in a computation that is not part of a conditional expression. The fourth column in the summary display
indicates p-use coverage. A p-use is a combination of an assignment to a variable, a use of the variable in a
conditional expression, and all branches based on the value of the conditional expression. Use the c-use/p-use
display feature to reveal the remaining c-uses and p-uses.

$ atac -mc wordcount.trace main.atac wc.atac
$ atac -mp wordcount.trace main.atac wc.atac

The -mc or -mp option specifies that c-use or p-use coverage measures should be applied. The output is included as
Attachments 2 and 3. The symbol def====> in the margin indicates the assignment (definition) of a variable.
The symbol use====> indicates the use of the variable as assigned at that assignment. If both the assignment and
use of a variable are on the same line, the symbol d/use====> is used, if the assignment comes first, or
u/def====> is used, if the use comes first.

The following tests cover the remaining cases:

$ wordcount -c nosuchfile ← test t.11
$ wordcount input1 nosuchfile ← test t.12
$ wordcount -cX ← test t.13
$ wordcount -wc <input1 ← test t.14
$ wordcount -c <input1 ← test t.15
$ wordcount -l <input1 ← test t.16
$ wordcount </dev/null ← test t.17
$ wordcount <input2 ← test t.18
$ wordcount <input3 ← test t.19

Now check the coverage summary for all tests so far:

$ atac -s -f wordcount.trace main.atac wc.atac

The output should look like this:

% blocks % decisions % C-Uses % P-Uses function
------------- ------------- ------------- ------------- -------------
100(31) 100(17) 100(63) 100(10) main
100(8) 100(6) 100(4) 100(6) print
100(14) 100(12) 100(16) 100(15) count
100(53) 100(35) 100(83) 100(31) == total ==

All coverage criteria measured by ATAC are now covered. From ATAC’s point of view, these 19 tests are a
completely adequate test of wordcount. Of course, all we have done is create a set of tests that will thoroughly test
the program. You must check that the program actually passed the tests. This may be done while using ATAC or
after recompiling with the standard compiler.

6

There is no guarantee that a program which has passed a completely adequate set of tests has no errors*. However,
in addition producing test sets that reveal errors, the use of ATAC to achieve high coverage places the source code
under intensive scrutiny which also tends to reveal errors. A complete test set combined with the effort to create
such a test set is very effective at revealing errors.

3. Trace Management − Coordinating the ATAC

When a program that has been compiled with ATAC is executed, information regarding the testable attributes
exercised is recorded in a trace file. The default name of the trace file is prog.trace, where prog is the name of the
executable file. (See the "Trace File Names" section for more information.) Subsequent executions of the program
append information to the same file. This trace file is used by the atac command to produce coverage displays and
reports. (The trace file is not in human readable form.)

By default ATAC uses trace information for all tests executed so far. If, during testing, a source file is modified,
trace information from tests executed before modification must be discarded. If the old trace information is not
discarded ATAC displays a message indicating which test are out of date. For example, if the source file main.c
were edited and compiled after execution of test t.1, the following message would be printed by atac.

wordcount.trace t.1: test is older than "main.c".

Information collected during this test would be omitted from the results of the atac command.

One way to discard obsolete trace information is to remove the trace file. This will discard information for all tests
executed so far. An individual test may be deleted from the .trace file using the ATAC trace manager command,
atactm. For example, a test named t.1 may be deleted from wordcount.trace by entering:

$ atactm -d -n t.1 wordcount.trace

A list of all the tests represented in wordcount.trace is obtained using the -L option of atactm. For example:

$ atactm -L wordcount.trace

The output after test t.1 is deleted is shown in Figure 3.

11/10/92-11:51:56 3.0 100 ----- t.2
11/10/92-11:53:03 3.0 100 ----- t.3
11/10/92-11:53:09 3.0 100 ----- t.4
11/10/92-11:53:14 3.0 100 ----- t.5
11/10/92-13:53:40 3.0 100 ----- t.6
11/10/92-13:53:49 3.0 100 ----- t.7
11/10/92-13:53:51 3.0 100 ----- t.8
11/10/92-13:53:53 3.0 100 ----- t.9
11/10/92-13:53:55 3.0 100 ----- t.10
11/10/92-13:56:28 3.0 100 ----- t.11
11/10/92-13:56:35 3.0 100 ----- t.12
11/10/92-14:08:05 3.0 100 ----- t.13
11/10/92-14:09:42 3.0 100 ----- t.14
11/10/92-14:09:48 3.0 100 ----- t.15
11/10/92-14:09:57 3.0 100 ----- t.16
11/10/92-14:10:03 3.0 100 ----- t.17
11/10/92-14:10:05 3.0 100 ----- t.18
11/10/92-14:10:06 3.0 100 ----- t.19

Figure 3. Atactm -L − Full List of Test Cases

The test list contains five columns for each test giving the date-time the test was executed, the version of ATAC

hhhhhhhhhhhhhhhhhh

* In general, only when all possible inputs have been tested does passing the tests imply the program is error free. For most programs this is
impossible.

7

used (3.0), a user assigned test cost (default 100), test trace attributes (----- for none), and the test name. Test
cost is described in the "Test Set Minimization" section. Test trace attributes are described in later sections where
appropriate. To obtain a list of test names only, use -l in place of -L. For example:

$ atactm -l wordcount.trace

gives:

t.2 t.4 t.6 t.8 t.10 t.12 t.14 t.16 t.18
t.3 t.5 t.7 t.9 t.11 t.13 t.15 t.17 t.19

By default tests are named t.n where n is a number starting from 1. Two tests never have the same name in a given
trace file. A test may be named explicitly by setting the ATAC_TEST environment variable to the test name before
the test is executed. A numeric suffix is added to the name automatically to make it unique. (A numeric suffix
should not be specified in ATAC_TEST). A test may be renamed using atactm For example, a test named t.2 in
wordcount.trace may be renamed lwc_test.1 by entering:

$ atactm -r lwc_test -n t.2 wordcount.trace

The -r option specifies the new name. The -n option identifies the test to be renamed. atactm -L
wordcount.trace will now show lwc_test.1 in place of t.2. A group of tests may be renamed using wild cards
or multiple -n options for the old test names. A different .n suffix is added to the new test name for each test. For
example, to rename t.9 through t.15 to new.1 through new.11 in wordcount.trace enter:

$ atactm -r new -n t.9 -n ’t.1*’ wordcount.trace

Wild cards are the same as those used for file names by the UNIX shell (*, ?, and [...]). Quote marks may be needed
to prevent the shell from expanding the test name as file names.

Test names and wild cards may also be used with test coverage analysis. For example, to obtain the coverage for
tests new.1 through new.11 in wordcount.trace enter:

$ atac -s -n ’new.*’ wordcount.trace main.atac wc.atac

It may sometimes be useful to see the coverage of each test individually. Rather than enter the atac -s -n
... command for each test, use the per test option, -p. For example:

$ atac -s -p wordcount.trace main.atac wc.atac

The output (after the deletion and renaming examples above) is shown in Figure 4. The -f option was omitted to
simplify the output. Note that the previous deletion of test t.1 did not reduce the total coverage. This test was
apparently not needed to achieve complete coverage. (The "Regression Testing" section discusses options for
detecting redundant test cases or test cases that are not cost effective.)

4. Test Comparison

It is often useful to compare the coverage of one set of tests with the coverage of another set to determine where and
to what extent they overlap. The -c option of atac provides this facility. For example, to obtain a summary of
testable attributes covered by tests new.1 through new.11 but not covered by test lwc_test.1, enter:

$ atac -s -n ’new.*’ -c lwc_test.1 wordcount.trace main.atac wc.atac

The output looks like this:

% blocks % decisions % C-Uses % P-Uses
------------- ------------- ------------- -------------
17(9/53) 26(9/35) 40(33/83) 29(9/31) == total ==

To display blocks covered by tests new.1 through new.11 but not covered by test lwc_test.1, enter:

$ atac -mb -n ’new.*’ -c lwc_test.1 wordcount.trace main.atac wc.atac

The output looks similar to the usual display of uncovered blocks. Wild cards and multiple -c and -n options may be
used.

8

% blocks % decisions % C-Uses % P-Uses test
------------- ------------- ------------- ------------- -------------
83(44/53) 71(25/35) 52(43/83) 71(22/31) lwc_test.1
17(9/53) 11(4/35) 8(7/83) 6(2/31) t.3
55(29/53) 49(17/35) 25(21/83) 61(19/31) t.4
19(10/53) 11(4/35) 10(8/83) 13(4/31) t.5
15(8/53) 11(4/35) 7(6/83) 6(2/31) t.6
70(37/53) 60(21/35) 48(40/83) 74(23/31) t.7
79(42/53) 69(24/35) 51(42/83) 71(22/31) t.8
75(40/53) 66(23/35) 47(39/83) 71(22/31) new.1
75(40/53) 66(23/35) 47(39/83) 71(22/31) new.2
28(15/53) 20(7/35) 16(13/83) 13(4/31) new.3
70(37/53) 60(21/35) 41(34/83) 74(23/31) new.4
21(11/53) 14(5/35) 12(10/83) 6(2/31) new.5
66(35/53) 63(22/35) 35(29/83) 65(20/31) new.6
62(33/53) 60(21/35) 31(26/83) 65(20/31) new.7
62(33/53) 60(21/35) 31(26/83) 65(20/31) new.8
40(21/53) 17(6/35) 19(16/83) 29(9/31) new.9
55(29/53) 49(17/35) 27(22/83) 61(19/31) new.10
55(29/53) 46(16/35) 27(22/83) 61(19/31) new.11
100(53) 100(35) 100(83) 100(31) == all ==

Figure 4. ATAC Per Test Coverage Summary

5. Trace Compression

At the end of a test, ATAC trace files are automatically reformatted into a compressed format to reduce the file size.
(The compressed trace file format is not the same as that used by general purpose file compression tools.) If a test
exits abnormally, e.g. by receipt of signal, the trace file may not be compressed. To prevent the trace file from
growing too large, atactm should be run to compress the trace file. For example, to compress wordcount.trace enter:

$ atactm wordcount.trace

The trace is automatically compressed when a test is renamed or deleted.

6. Selective Coverage

ATAC coverage analysis is limited to source files that have been compiled with atacCC. Coverage analysis can be
further limited based on a combination of:

— Test cases

— Functions (C subroutines)

— Source files

Coverage analysis is restricted to a named set of tests by the atac -n test-name option as described in the "Trace
Management" section, above. In this case, coverage is reported only for selected test cases.

Coverage analysis is restricted to a named set of functions by the atac -F function-name option. Wild cards or
multiple -F options may be used to specify multiple function names. For example to obtain coverage in
wordcount.trace for functions with names starting with m or p only, enter:

$ atac -s -f -F ’[mp]*’ wordcount.trace main.atac wc.atac

Coverage analysis is restricted to selected source files by including on the command line only .atac files
corresponding to selected source files. For example to obtain coverage in wordcount.trace for functions in source
file wc.c only, enter:

$ atac -s -f wordcount.trace wc.atac

If coverage information will be needed only for functions in selected source files, it is unnecessary to compile the
remaining source files with ATAC. Since compilation with ATAC increases execution time, and memory use, and
object code size, (see the "Performance and Timing Considerations" section) it may be advantageous to use ATAC

9

only on source files for which coverage information is needed. The remaining source files may be compiled with
the standard compiler. In any case, all object files must be linked with atacCC. In the wordcount example, if
coverage information is needed for wc.c only, make may be used to compile wordcount as follows:

$ make cleanup
$ make main.o
$ make CC=atacCC

The first make will remove previously created .o and executable files. The second make will compile main.c with
the standard compiler. The third make will compile wc.c with ATAC and link all object files with ATAC.

At times you may loose track of which object files or executable files were compiled with ATAC. The SCCS what
command or the RCS ident command may be used to identify files compiled with ATAC. For example, for SCCS
use:

what main.o wc.o wordcount | grep ATAC

For RCS use:

ident main.o wc.o wordcount | grep ATAC

If none of the files were compiled with ATAC, no lines are printed.

7. Trace File Names

By default, execution of a program compiled with ATAC creates a trace file in the current directory, with the name
prog.trace, where prog is the original name of the executable file; that is, the name that was specified with the -o
option to atacCC. If no -o option was given to atacCC, the trace file is created with the name a.out.trace. If the
executable file is subsequently renamed, the default trace file name remains the same.

The trace file name may be overridden by setting the ATAC_TRACE environment variable to the trace file name
before the test is executed. By convention the trace file name ends with .trace. The trace file name may not begin
with a hyphen and may not end with .atac (which is reserved for .atac files). (Suffixes .ata, .at, and .a, are also
reserved for .atac files when the filename has maximum permitted length for your system.) The value of
ATAC_TRACE is also used by atac, and atactm if no trace file name is specified. (If ATAC_TRACE has no value,
a.out.trace is used.)

The trace file may be written in a directory other than the current directory by setting the ATAC_DIR environment
variable with a path to the desired directory. The value of ATAC_DIR, if set, is also used by atac and atactm.

8. Coverage Measures

ATAC implements a number of structural coverage measures of varying strength. Figure 5 shows an approximate
partial ordering of the coverage measures from weak to strong.

Function
 Entry Block Decision All−use

C−use

P−use

Figure 5. Approximate Partial Ordering of ATAC Coverage Measures

Coverage measure x is stronger than coverage measure y if, for any program, completely adequate coverage on
measure x implies completely adequate coverage on measure y and the converse is not true. (If the converse is true,
the measures are equivalent in strength.) For example, block coverage is stronger than function coverage because if
all blocks are covered, all functions must have been entered. (Even an empty function is considered to have an
implicit entry block.) Block coverage is weaker than decision coverage, assuming every function has at least one

10

decision and every function called, returns, because if all decisions are covered, all blocks must be covered. We call
this partial ordering approximate because it holds given certain assumptions which are not always true in C
programs.

The weaker coverage measures usually require fewer test cases than the stronger measures to obtain completely
adequate coverage. It is also easier to create test cases for the weaker coverage measures using the ATAC displays.
However, completely adequate coverage for a weaker measure is less likely to reveal an error than completely
adequate coverage for a stronger measure. The recommended approach is to create tests that achieve high coverage
on each measure starting from the weakest and moving toward the strongest. Increasing the coverage of the weaker
measures is easier and will usually increase the coverage for the stronger measures also. By default, ATAC does
not display a testable attributes of a stronger measure that contains uncovered testable attributes of a weaker
measure. For example, an uncovered block is not displayed if the function containing that block was never called.
Similarly, an uncovered decision is not displayed if either the decision predicate or the consequent statement were
never exercised. These will be displayed in the display for the weaker measure.

A completely adequate test set is not typically as easy to create as in the tutorial example in section 1. As the level
of coverage increases for a measure, it becomes increasingly more difficult to create test cases that cover the
remaining testable attributes. The appropriate coverage measures and target level of coverage for a given program
depend on the reliability requirements for that program. In some cases it may be impossible or impractical to
achieve complete coverage. When a testable attribute cannot be exercised by any test case it is called infeasible.
ATAC attempts to identify infeasible testable attributes and omit them or count them as covered. Unfortunately,
this is not possible in general. In cases where test cases cannot be created to achieve complete coverage, one should
try to determine, using the ATAC display as an aid, whether the uncovered testable attributes are feasible, and if
they are, under what conditions they would be exercised. If the risk of an error in the program under those
conditions is acceptable, it may be unnecessary to pursue completely adequate coverage.

The number of test cases required to achieve a given level of coverage depends on the nature of the program and its
input. In some cases one large test case may completely cover a program. A number of smaller test cases may be
more manageable and more helpful in locating the source of an error once the error is revealed. (See also [Bei89].)

The -m option of atac is used to select coverage options. Any combination of e, b, d, c, p, u may be specified
respectively for function-entry, block, decision, c-use, p-use, and all-use.

Function entry coverage counts the functions defined in the program that are called at least once. Function
coverage includes only functions coded in the source files compiled with ATAC. The function need not be called
from a function compiled with ATAC.

Block coverage counts the branch free executable code fragments that are exercised at least once. A block may be
more than one C statement if there is no branching between statements. A statement may contain multiple blocks if
there is branching inside the statement. An expression may also contain multiple blocks if there is branching
implied in the expression (e.g. a conditional expression or logical-and or logical-or expression). If block coverage is
less than 100%, there are statements that are not exercised by any test. Completely adequate block coverage implies
completely adequate function-entry coverage.

Decision coverage counts the number of branches that have been followed at least once. If a decision is not covered
during testing, an error in the decision predicate may not be revealed. Completely adequate decision coverage
implies completely adequate block coverage except for functions with no branches.

C-use, or computational variable use coverage count the number of combinations of an assignment to a variable and
a use of a the variable in a computation that is not part of a conditional expression. Since functions and statements
need not use or assign any variables, c-use coverage is not comparable to most of the other measures.

P-use, or predicate variable use coverage count the number of combinations of an assignment to a variable, a use of
the variable in a conditional expression, and all branches based on the value of the conditional expression. The idea
behind c-use and p-use coverage is that when a variable may be assigned a value in more than one way, a good test
set will insure that the uses of that variable are exercised for each possible assignment. Completely adequate p-use
coverage implies completely adequate decision coverage except when there are predicates that do not contain any
variables (e.g. while (getchar() != ’\n’);).

11

All-use coverage is the sum of p-use and c-use coverage measures.

The structural coverage measures implemented by ATAC are introduced for PASCAL in [RAP85]. Numerous
other structural coverage measures have been proposed. For more information see also [Cla89], [DeM79], [Fra88],
and [How82].

9. Execution Counts − Counter ATAC

In addition to recording coverage information, ATAC records the number of times each testable attribute is covered
during a given test. This information may be useful as a rough measure of machine independent execution time.
(However, execution counts do not account for varying execution times for different statements nor do the account
for code that is not compiled with ATAC.) The total number of times each construct was covered is displayed with
the -C option. For example, the total number of blocks executed by each test of the wordcount program is displayed
by:

$ atac -C -mb -p wordcount.trace main.atac wc.atac

The -mb option specifies information for blocks only. The -p option specifies information for each test. The output
is shown in Figure 6.

blocks test
------------- -------------
201(53) lwc_test.1
9(53) t.3
171(53) t.4
10(53) t.5
8(53) t.6
360(53) t.7
195(53) t.8
189(53) new.1
189(53) new.2
16(53) new.3
183(53) new.4
13(53) new.5
181(53) new.6
176(53) new.7
176(53) new.8
21(53) new.9
321(53) new.10
180(53) new.11
2599(53) == total ==

Figure 6. ATAC Execution Counts Per Test Case

The last line indicates that for the 53 total blocks there were a total of 2599 block executions during these tests.

The greatest number of executions of a single testable attribute may be displayed using the -H option. The threshold
option, -t may then be used to display all testable attributes executed more than a given number of times. This may
be useful for performance analysis. For example, the greatest number of executions of a block for all tests of the
wordcount program is displayed by:

$ atac -H -mb wordcount.trace main.atac wc.atac

The output indicates that one (or more) block was executed 281 times by these tests:

blocks

281 == all ==

Based on this result, we may choose to display all blocks executed more than 250 times using:

$ atac -mb -r -a -t 250 wordcount.trace main.atac wc.atac

12

The -r option requests that covered blocks be displayed rather than non-covered blocks. The -a option requests that
covered blocks be displayed even if they are in a non-covered function, i.e. a function that was not entered 250
times. The output is shown in Figure 7.

Figure 7. ATAC Display of Blocks Executed 250 or More Times

If a test exits abnormally, execution count information is not available. The atactm -L command indicates tests for
which frequency information is not available by displaying the letter f in place of the first hyphen of the test
attributes. In the following example, frequency information is not avaiable for tests t.2 and t.4.

$ atactm -L wordcount.trace
11/10/92-11:51:56 3.0 100 f---- t.2
11/10/92-11:53:03 3.0 100 ----- t.3
11/10/92-11:53:09 3.0 100 f---- t.4
11/10/92-11:53:14 3.0 100 ----- t.5

10. Regression Testing

Regression testing refers to testing a modified program or system to determine that recent changes have not
adversely affected existing features. Regression testing may be performed on the whole system or on various
subsystems or units. At every stage of testing it is a good idea to save tests to be run later as a regression test. Test
developed with ATAC are particularly useful as regression tests because it is know how thoroughly they test the
program. (See also [Agr92], [Ost88].)

As your test set grows larger you may wish to identify a subset of the tests that achieves high coverage yet is easier
to set-up, execute, and evaluate than the complete set of tests. ATAC can do this in two ways. The ATAC
minimization command, atacMin, will attempt to identify a minimal cost subset of all the tests. The following
command lists the names of a minimal subset of the tests in the wordcount example that achieve the same block and
decision coverage as all tests combined.

$ atacMin -mbd wordcount.trace main.atac wc.atac

The output looks like this:

new.11 new.2 new.4 new.5 t.6 t.8

The tests are listed in order of decreasing added coverage.* The -mbd option requests that minimization be based
on blocks and decision coverage only. By default, block, decision, p-use and c-use coverage are considered.

hhhhhhhhhhhhhhhhhh

* This ordering is implemented in ATAC version 3.1.

13

Minimization may be limited to selected tests or selected functions (subroutines) using the -n and -F options in the
same way they are used with the atac command.

The cost of each test** is a non-negative integer assigned by the tester with the -c option of the atactm command.

$ atactm -n t.3 -c 500 wordcount.trace

The unit of cost is determined by the user. Cost should be assigned to reflect the relative difficulty and expense of
executing the test case. Depending on the nature of the program this may a function of execution time, tester time,
test setup time, or any of a number of other factors. ATAC assigns an initial cost of 100 to each test. The current
cost assignments are displayed with the atactm -L command. (See the "Trace Management" section above.)

In practice, atacMin identifies a minimal covering subset fairly quickly; in fact, the algorithm used is faster than any
published algorithm for the minimal set cover problem. However, since the problem is in the class of NP complete
problems, there may be cases for which atacMin cannot find a minimal subset in a reasonable amount of time.
AtacMin provides additional options, that will limit the search time by reporting a "minimal or near minimal" result
(See the attached manual page for atacMin .)

In some cases, a cost effective test set need not be minimal. You may wish to make the cost versus effectiveness
trade-off decision yourself. ATAC provides the -SKq options*** to sort the tests in order of decreasing added cost
effectiveness for this purpose. For example, using our tests for wordcount, cost effectiveness is given with the
command:

$ atac -s -SKq wordcount.trace main.atac wc.atac

The -S option requests that the tests be sorted in order of increasing additional coverage. The -K option requests an
output column listing the cost of each test. The -q option requests that the cost and coverage values be cumulative;
i.e. the line for each test contains the total cost and coverage for all tests up to and including itself. The output using
the default cost of 100 per test is shown in Figure 8.

cost % blocks % decisions % C-Uses % P-Uses test
(cum) (cumulative) (cumulative) (cumulative) (cumulative)
------ ------------- ------------- ------------- ------------- -------------
100 83(44/53) 71(25/35) 52(43/83) 71(22/31) lwc_test.1
200 89(47/53) 80(28/35) 66(55/83) 81(25/31) new.4
300 94(50/53) 86(30/35) 73(61/83) 87(27/31) new.9
400 94(50/53) 91(32/35) 78(65/83) 94(29/31) new.1
500 100(53) 94(33/35) 80(66/83) 94(29/31) t.3
600 100(53) 94(33/35) 86(71/83) 94(29/31) t.7
700 100(53) 97(34/35) 89(74/83) 97(30/31) new.8
800 100(53) 97(34/35) 93(77/83) 97(30/31) new.6
900 100(53) 97(34/35) 95(79/83) 97(30/31) new.2
1000 100(53) 97(34/35) 96(80/83) 100(31) new.11
1100 100(53) 97(34/35) 98(81/83) 100(31) t.5
1200 100(53) 100(35) 98(81/83) 100(31) t.6
1300 100(53) 100(35) 99(82/83) 100(31) new.3
1400 100(53) 100(35) 100(83) 100(31) new.5
1500 100(53) 100(35) 100(83) 100(31) t.4
1600 100(53) 100(35) 100(83) 100(31) t.8
1700 100(53) 100(35) 100(83) 100(31) new.7
1800 100(53) 100(35) 100(83) 100(31) new.10

Figure 8. ATAC Cost Effectiveness Summary

hhhhhhhhhhhhhhhhhh

** The cost feature is implemented in ATAC version 3.1. In version 3.0, the atacMin command assumes equal cost for each test regardless of
the cost assigned.

*** These option are implemented in ATAC version 3.1.

14

From this summary it is easy to identify a subset of the tests that achieve a given level of coverage at reduced cost.
For example, all tests together have cost 1800. Tests lwc_test.1 through t.3 achieve at least 80% coverage on all
measures at a total cost of 500. At a total cost of 1000 we could achieve at least 96% coverage on all measures
using tests lwc_test.1 through new.11 .

11. Code Preprocessors

The standard C preprocessor, cpp, is invoked automatically by the standard C compiler, cc. ATAC analyses the
program after preprocessing is complete. However, source code displays show the original code. To accomplish
this ATAC uses its own preprocessor which behaves like cpp except that it embeds column position information in
the generated code which ATAC uses to display code fragments accurately. When uncovered testable attributes
exist inside a preprocessor macro expansion, the ATAC display will highlight the macro name and arguments. The
putc and getc macros are treated as an exception because they are used frequently and their internal structure is of
no interest to the general tester. These two macros are replaced with calls to fputc and fgetc .

In addition, to the standard C preprocessor, C code is often generated by special purpose preprocessors such as yacc,
sql, m4, or cfront. ATAC may be used with these preprocessors by calling atacCC after the source code has been
appropriately preprocessed. Most preprocessors emit #line directives that indicate the original source code files
and line numbers. ATAC will use these directives if they are present. If these directives are not present or if the
preprocessor has changed column positions in the source code, ATAC’s source code display may be inaccurate.

12. Overriding CC

By default, ATAC uses the C compiler called cc that is found first in $PATH. This option may be overridden by
setting the environment variable ATAC_CC to the name or complete path of an alternate C compiler.

Some programs may contain conditional compilation directives (#if or #ifdef) based on predefined
preprocessor symbols (e.g. #ifdef unix). By default, ATAC defines the symbols that it finds predefined by the C
preprocessor used at installation. If an alternate C compiler is specified by the ATAC_CC environment variable,
ATAC defines the symbols that it finds predefined by the preprocessor invoked by that compiler. In either case, the
list of predefined symbols is revealed by atacCC with the -E option and no other arguments:

$ atacCC -E

On a Sun workstation the output looks like this:

sparc 1
sun 1
unix 1

Unfortunately, ATAC cannot always determine all the symbols defined by a given preprocessor.

13. Performance and Timing Considerations

Programs compiled with atacCC will execute somewhat more slowly than normally. Execution times vary among
programs depending on the nature of the computation and the size of the trace file. This affect is only present
during testing with ATAC. After testing, the program should be recompiled without ATAC to obtain maximum
execution efficiency. This affect is insignificant in most testing environments. However, in some time dependent
applications the change in timing behavior may affect the execution of the program.

Execution time may be reduced, at a cost of some disk space, by removing the trace compression step. Normally,
ATAC attempts to compress the trace file at the end of each test execution. If execution time is critical during
program exit, trace compression may be suppressed by setting the ATAC_NOCOMPRESS environment variable
before the program is executed. In this case, it is advisable to run atactm on the trace occasionally, between tests, to
reduce the size of the trace file. To resume automatic trace compression, unset the ATAC_NOCOMPRESS
environment variable.

The impact of ATAC on execution time may also be reduced by limiting the scope of testing to subsets of the source
files as described in the "Selective Coverage" section above. In this case, execution time is only affected while
executing code in the source files compiled with ATAC. Overall coverage information is obtained by executing the

15

same tests on each selected subset.

Execution time may also be reduced when testing in a file-server environment, by directing the trace file to a file on
a local disk. (See the "Trace File Names" section above.) This will eliminate network file access time while writing
to the trace file.

14. Compilation and Link Errors

When a program fails to compile or link with atacCC check that it compiles and links without errors using the
standard cc. A program that compiles and links without errors using cc should compile and link without errors
using atacCC with the same arguments, with the following exceptions:

1. AtacCC considers const, enum, signed, void, and volatile to be keywords as required by the
ANSI C standard*. AtacCC does not support the use of these keywords as identifier names.

2. AtacCC does not support reuse of typedef names in a given source file. ANSI C and some other compilers
allow reuse of typedef names in a nested scope or outside the scope of the typedef.

3. AtacCC does not support the ANSI C empty struct/union declaration to clear the definition of a
struct/union tag. These declarations are ignored.

4. AtacCC does not support anachronistic C constructs that may be present in programs written before 1977.
These constructs, such as =+ instead of += and int x 6; instead of int x=6;, are still supported by
some compilers. Spaces inside assignment operators such as = + instead of += are not supported by
atacCC. AtacCC does not support struct/union member names used in association with a struct/union in
which they were not declared.

5. AtacCC may not support extensions to the C language such as in-line assembler code sections, syntax
variations, etc.

6. Some C compilers do not consider identifier names significant beyond the 6th character position. AtacCC
considers the whole name significant. As a result AtacCC may detect misspelled variable names that are not
detected by these compilers.

7. The preprocessor for atacCC searches for system include files in /usr/include. If other directories must be
searched they should be specified with the -I option.

8. AtacCC requires write permission in /usr/tmp for temporary files.

In most of these cases atacCC will issue an atacCC: parse failed message and fail to compile the program.

After preprocessing and data-flow instrumentation of a source program, atacCC passes the modified program to the
standard C compiler. (See the "Overriding CC" section above.) Errors from the standard C compiler may indicate
an error in ATAC or in the standard C compiler.

A program compiled with atacCC must be linked with atacCC. If linked with the standard compiler the linker will
issue a message indicating an undefined external symbol named aTaC or _aTaC.

15. Runtime Errors

A program compiled with atacCC should exhibit the same behavior as the same program compiled with cc with the
following exceptions:

1. The program compiled with atacCC will create or append to a trace file. (See the "Trace File Names" section,
above.)

2. The program compiled with atacCC will execute somewhat more slowly than the original program. If the
program is timing sensitive, this may cause other behavioral differences. (See the Performance and "Timing

hhhhhhhhhhhhhhhhhh

* American National Standard for Information Systems − Programming Language C, Document Number X3J11.

16

Considerations" section, above.)

3. AtacCC attempts to define the same predefined symbols as the standard C compiler. (See the "Overriding
CC" section, above.) If a symbol is used that is predefined by the standard C compiler predefines but not
defined by atacCC the program may be compiled differently by atacCC.

4. AtacCC translates trigraph sequences as required by the ANSI C standard. The value of strings containing the
sequence ?? may be different than the value given by a non ANSI compiler.

5. In accordance with the ANSI C standard, atacCC does not expand preprocessor macro arguments that occur
inside a string. The value of strings inside preprocessor macros may be different than the value given by a
non ANSI compiler.

6. The ATAC runtime routine uses malloc for memory allocation. Programs that allocate memory in a
manner that is not compatible with malloc may not execute properly with ATAC.

7. ATAC redefines the standard library macros putc and getc to fputc and fgetc . User supplied redefinition of
these macros is ignored.

8. Programs that appear to behave correctly sometimes contain memory violations which, by chance, do not
interfere with program execution. (E.g. accessing unallocated memory locations.) When ATAC is used these
violations may begin to interfere with program execution.

16. Trace Corruption

ATAC does not support parallel test execution. In particular, if two tests are executing at the same time with the
same trace file, the trace file may become corrupted. When this happens, the atac and atactm commands may issue
a message such as:

wordcount.trace: corrupted trace line: 58

The atactm -L command indicates tests that have corrupted trace information by displaying the letter c in place of
the second hyphen of the test attributes. In the following example, tests t.3 and t.4 are corrupted.

$ atactm -L wordcount.trace
11/10/92-11:51:56 3.0 100 ----- t.2
11/10/92-11:53:03 3.0 100 -c--- t.3
11/10/92-11:53:09 3.0 100 -c--- t.4
11/10/92-11:53:14 3.0 100 ----- t.5
11/10/92-13:53:40 3.0 100 ----- t.6

The offending test cases may be removed using the -d option of atactm:

$ atactm -d -n t.3 -n t.4 wordcount.trace

Trace corruption can occur from a single test if interrupt handler and non-interrupt handler code are being tested at
the same time. ATAC tries to avoid trace corruption in these cases by ignoring interrupt handler coverage at critical
times. When trace corruption does occur, the test may be delete and rerun.

17. Availability

ATAC is available for most 32 bit UNIX-like systems. A windowed environment is not required.

17

References

[Agr92] H. Agrawal, J.R. Horgan, E.W. Krauser, S.A. London, "Incremental Regression Testing". Proceedings of
the 1993 IEEE Conference on Software Maintenance (CSM’93), Montreal, Canada, September 27-30, 1993.

[Agr93] H. Agrawal, J.R. Horgan, E.W. Krauser, S.A. London, "A Testing Based Model and Risk Browser for C".
Proceedings of the Second IASTED International Conference on Reliability, Quality Control, and Risk
Assessment, Cambridge, Massachusetts, October 13-15, 1993.

[Bie89] J.M. Bieman, J.L. Schultz, "Estimating the Number of Test Cases Required to Satisfy the All-du-paths
Testing Criterion". Third Workshop on Software Testing, Verification, and Analysis, Key West, IEEE
Computer Society, 1989.

[Cla89] L. Clarke, A. Podgurski, D. Richardson, S. Zeil, "A Formal Evaluation of Data Flow Path Selection
Criteria". IEEE Transaction on Software Engineering, SE-15(11):244-251, Nov 1989.

[DeM79] R.A. DeMillo, R.J. Lipton, F.G. Sayward, "Program Mutation: A New Approach to Program Testing".
Infotech State of the Art Report, Software Testing, Volume 2: Invited Papers, Infotech International, 1979.
pp. 107-126.

[Fra88] P.C. Frankl, E.J. Weyuker, "An applicable Family of Data Flow Testing Criteria IEEE Transactions on
Software Engineering, SE-11, No.4, April 1985.

[Hor90] J.R. Horgan, S.A. London, "A Data Flow Coverage Testing Tool for C". Proceedings of the Second
Symposium on Assessment of Quality Software Development Tools, New Orleans, LA, 1992.

[Hor91] J.R. Horgan, S.A. London, "Data Flow Coverage and the C Language". ACM SIGSOFT Symposium on
Testing, Analysis, and Verification (TAV4), Victoria, B.C., 1991.

[How82] W.E. Howden, "Weak Mutation Testing and Completeness of Test Sets". IEEE Transactions on Software
Engineering, SE-8(4), July 1982. pp. 371-379.

[Las83] J.W. Laski, B. Korel, "A Data Flow Oriented Program Testing Strategy". IEEE Transactions on Software
Engineering, SE-9(3), 1983.

[Ost88] T.J. Ostrand, E.J. Weyuker, "Using Data Flow Analysis for Regression Testing". Sixth Pacific Northwest
Software Quality Conference, Portland, Oregon, 1988.

[Rap85] S. Rapps, E.J. Weyuker, "Selecting Software Test Data Using Data Flow Information". IEEE Transactions
on Software Engineering, SE-11, No.4, April 1985.

18

Uncovered C-use Display for Wordcount Program

Attachment 1 - page 1

19

Uncovered C-use Display for Wordcount Program

Attachment 1 - page 2

20

Uncovered C-use Display for Wordcount Program

Attachment 1 - page 3

21

Uncovered C-use Display for Wordcount Program

Attachment 1 - page 4

22

Uncovered C-use Display for Wordcount Program

Attachment 1 - page 5

23

Uncovered C-use Display for Wordcount Program

Attachment 1 - page 6

24

Uncovered C-use Display for Wordcount Program

Attachment 1 - page 7

25

Uncovered P-use Display for Wordcount Program

Attachment 2

26

27

